44 ► | MarMotion. High-precision rotary stroke bearings

5. Computation of the Rotary Stroke Bearing

Mahr

PR

P10

5.2.2 Radial load as pure moment

The end zones of contact length e are the most heavily loaded for both divided and undivided contact zones.

$$M = \mathbf{P}_{\mathbf{R}} \cdot \mathbf{I} \text{ [Nm]}$$

$$P_{R} \text{ in N, I in m}$$

Specific radial force

$$P_{10} = g \cdot M [N]$$

g in m⁻¹

The factor g is taken from the diagram (Fig. 25). In the case of an undivided contact length, the distance is $I_i = 0$. Deflection to be expected at the point of application of radial force P_R :

Deflection
$$\mathbf{A} = \frac{\mathbf{I}}{\mathbf{e}} \cdot \mathbf{P}_{10} \cdot \mathbf{R}_{10} \ [\mu m]$$

 $R_{\rm 10}$ in $\mu m/N$ from table (Fig. 27 or 28)

The deflection of the shaft is not taken into account.

5.2.3 Uneven radial load

The ball zone next to the point of application of the radial force is most heavily loaded.

The specific radial force P_{10} is a combination of the moment M and the radial force P_{R} .

Specific radial force

 $\begin{aligned} \mathbf{P_{10}} &= \mathbf{g} \cdot \mathbf{M} + \mathbf{h} \cdot \mathbf{P_{R}} \left[\mathbf{N} \right] \\ \text{g in m}^{-1}, \text{ h dimensionless,} \\ \text{M in Nm, } \mathbf{P_{R}} \text{ in N} \end{aligned}$

The factors g and h are taken from the diagrams (Fig. 25 and 26) depending on the distance I_i . In the case of an undivided contact length, the distance is $I_i = 0$.

PR

P10

 $\overline{2}$

e