......

MarMotion. High-precision rotary stroke bearings | < 45

Mahr

5. Computation of the Rotary Stroke Bearing

After P₁₀ has been calculated, a comparison with the specific rated load C₁₀ (tables in Fig. 27 and 28) reveals whether the rotary stroke bearing is correctly dimensioned.

Requirement: $P_{10} \leq C_{10}$

The deflection A is calculated as described in section 5.2.2.

Computation example:

To be determined: Load of the most heavily loaded ball zone

	Contact length $e = 200 \text{ mm}$
	Contact length $e = 200 \text{ mm}$ Distance between the ball zones $I_i = 100 \text{ mm}$
	Contact length $e = 200 \text{ mm}$
	$P_{R} = 1000 \text{ N}$ I = 300 mm
Given:	Radial force acting on one side

Solution:

F 10	$-g \cdot w + m \cdot r_R$
Μ	$= \mathbf{P}_{\mathbf{R}} \cdot \mathbf{I}$
	$= 1000 \text{ N} \cdot 0.3 \text{ m}$
q	$= 2 \text{ m}^{-1}$ (from diac

 $g = 2 m^{-1}$ (from diagram Fig. 25) h = 0.11 (from diagram Fig 26)

 $P_{10} = 2 \text{ m}^{-1} \cdot 300 \text{ Nm} + 0.11 \cdot 1000 \text{ N}$

= 300 Nm

 $P_{10} = 710 N$

5.3 Specific rated load C₁₀

Definition

The specific rated load C_{10} is the radial loading capacity of ball operating zone 10 mm long of a MarMotion high-precision rotary stroke bearing, taking into account the nominal diameter d_w , preloading value v and cage type N 500, N 501, N 511 or N 502.

In section 5.2, the specific radial force P_{10} was calculated from the load of the rotary stroke bearing. The following must always apply:

$\boldsymbol{P_{10}} \leq \boldsymbol{C_{10}}$

C₁₀ depends on:

Nominal diameter d_w , ball diameter, number of balls, preloading value v and the following criteria: The surface pressure at the contact points between the rolling elements and the rolling faces of the shaft and the bush (Hertzian stress); and the elastic deflection of the shaft axis from the "0" position, which is determined by the rigidity R_{10} of a 10 mm ball zone.

The specific rated loads C₁₀ of Mahr ball cages N 500 and N 501 set out in the tables (Fig. 27 and 28) were defined to justify our claim of manufacturing "high-precision rotary stroke bearings".

The elastic deviation under a load $P_{10} = C_{10}$ should not be more than half the preloading value v.

$\delta_{\text{R,max}}\!=\!\textbf{0,5 v}\left[\mu\text{m}\right]$

The quoted values for C_{10} and R_{10} are given as a function of the preloading value v in such a way as to ensure that this condition is met. The **rigidity** R_{10} [µm/N] is the axial deflection of a 10 mm ball zone under a radial load of 1 N. The deflection of a 10 mm ball zone is computed from:

$A_{10} = P_{10} \cdot R_{10} [\mu m]$

Method I

The first step is to determine the specific radial force P_{10} . The required nominal diameter d_w and value for C_{10} , which must be greater than or equal to the value of P_{10} are then read off from one of the tables.

Method II

From the known nominal diameter d_{w} , C_{10} is read off from one of the tables and then used in further computations as the **permissible** specific radial force P_{10} .